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NOMENCLATURE 

Eckert number (= U*/C,AT) [dimensionless] ; 
pressure drop parameter (= - D,2{dp/dz + 
p,g}/4pU [dimensionless] ; 
viscous dissipation parameter (= Eck/Re) [dimen- 
sionless] ; 
Nusselt number (= hDJk) [dimensionless] ; 
dimensionless radius (= 2r/D3; 
dimensionless inner radius (= 2r&,) ; 
dimensionless outer radius (= 2r,/D,,); 
Rayleigh number (= pz/$&,CDJ16/rk) [dimen- 
sionless] ; 
Reynolds number (= UD,,/v) [dimensionless] ; 
average axial velocity ; 
fluid properties ; 
fluid properties ; 
W+ ; 
rijrO, radius ratio [dimensionless] ; 
temperature function (= 4k{ T - T,}/{pUC,CDi}) 
[dimensionless]. 

INTRODUCTION 

THE OMISSION of viscous dissipation iu the thermal energy 
balance for viscous flow would be unrealistic from the physics 
of fluids. For external flows, the effect of viscous dissipation 
is found to be quite significant because of the energy gen- 
erated in the boundary layer, and the skin temperatures that 
are attained at very high velocit&. Several studies have 
been made in this regard because the phenomena of ‘aero- 
dynamic heating’ at high Mach numbers can cause severe 
problems due to the temperature limitations of structural 
materials commonly used in the manufacture of aircraft 
parts and missiles. 

The study of the effects of viscous dissipation in internal 
laminar flows can be divided into three parts, (i) forced 
convection, (ii) free convection and (iii) combined free and 
forced convection. 

(i) Tyagi [14] in a series of papers has studied the effect 
of viscous dissipation in forced convection through non- 
circular channels. He has used the method of complex 
variables and has obtained solutions for both Neumann 
and Dirichlet type thermal boundary conditions, showing 
that viscous dissipation has significant effect on the Nusselt 
number. Cheng [S] has studied the effect of viscous dissipa- 
tion for flow through regular polygonal ducts using the 
method of point-matching. 

(ii) Ostrach [6-93 has investigated the effects of viscous 
dissipation in natural convection flows through channels 
formed by two parallel long plane surfaces and has shown 
that the flow and heat transfer are not only functions of 
Prandtl and Grashof numbers but also depend on the 
dimensionless frictional heating parameter which may 
appreciably affect the mode of heat transfer. 

(iii) The only published work in the field of combined free 
and forced convection is that of Ostrach [lo, 111. He has 
used the method of successive approximations to analyse 
the problem of taking into account the effects of frictional 
heating in flow between vertical parallel plane surfaces and 
has obtained results similar to his free convection analysis. 
The effects of viscous dissipation for flow through circular 
ducts has been recently reported [12] and shows that the 
effect of viscous dissipation on Nusselt numbers is not 
significant for small values of the dissipation parameter. 
The present study treats the case of annular flow and shows 
that the effect of viscous dissipation on Nusselt numbers 
may not be ignored, for the same value of the dissipation 
parameter. 

FORMULATION OF THE PROBLEM 
AND SOLUTION 

Consider a vertical straight circular concentric annulus of 
inner and outer radii r, and ro. The flow is considered to be 
laminar and fully developed, both hydrodynamically and 
thermally, and is in the vertical upward direction along the 
positive z-axis. The condition of uniform heat input per unit 
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length in the direction of flow is considered. The fluid 
properties will be considered constant except for the varia- 
tion of density in buoyancy term of the equation of motion. 
Under the above assumptions, all the terms in the differen- 
tial form of the continuity equation will reduce identically 
equal to zero. Due to symmetry, the momentum equation 
in angular direction will not exist. The momentum equation 
in radial direction can be considered negligible. The equation 
of motion in z-direction can be written as 

The simplified energy equation can be written as. 

The last two terms on the right-hand side of (2) are the 
viscous dissipation and compression work terms respec- 
tively. The compression work term as written above is 
obtained after simplifying the energy equation as given by 
Rohsenow and Choi [13]. Tyagi [3,4] has shown the relative 
significance of these two terms. In the present study we will 
ignore the compression work term, this being smaller than 
the viscous dissipation term. For the condition of uniform 
heat input per unit length and constant fluid properties, the 
axial temperature gradient at the wall and for the fluid 
become constant and equal. Thus aT@Z = C, where C is a 
constant. 

In non-dimensional form, equations (1) and (2) can be 
written as. 

In equations (3) and (4). Rayleigh number Ra and the 
viscous dissipation parameter M are prescribed quantities, 
while 1/ $J and Lare the three unknowns to be determined. 
As there are two equations in three unknowns, we need 
another relation which is provided by the integral form of 
the continuity equation. 

JJYdA = JJdA. (5) 

We have not so far mentioned anything about the bound- 
ary conditions. The condition of no slip at both walls will 
apply, giving 

V=O at R=Ri and R=R,. (6) 

The heat input can bc supplied through either one or 
both the walls. We will consider the following three situa- 
tions. 

Case 1. Outer wall heated and inner adiabatic, 

+=O at R=R,; and d$/dR=O at R=R, (7) 

Case 2. Inner wall heated and outer adiabatic, 

4 = 0 at R = R,, and d4/dR = 0 at R = R,. (8) 

Case 3. Both walls heated with equal temperatures, 

4 = 0 at R = R, and R = R,. 0) 

An exact solution of (3H6) with any one of the three 
thermal boundary conditions is extremely difficult, if at all 
possible. Main difficulty lies due to the nonlinear term in 
(4). This system of equations have been solved by the 
numerical integration method of Runge-Kutta of order four. 
This numerical integration method, however, utilizes start- 
ing initial values from an exact solution of the equations 
without viscous dissipation term. We will therefore, first 
present this exact solution with M = 0. 

A general form of the exact solution without viscous 
dissipation [14] for the concentric annulus in the form of 
Kelvin functions is presented in a simplified manner for 
Case I only, the approach for the other two cases being 
similar. Neglecting viscous dissipation. (M = O), we divide 
equations (3) and (4) by L; so that these equations will now 
contain only two unknown functions Vand $, where V = V L 
and 4 = 4;L. The solution of the resulting equation for 
circular concentric annulus can be written as 

V= C,ber,(r/R) + C,bei&RI + C,ker&R) 

+ C,kei&RL (10) 

6 = - i + $ [ - C,bei&R) + C,ber&R) 

- C,kei,(r/R) + C,ker&R)]. (111 

The unknowns, C,, C,. C, and C, are obtained by apply- 
ing the boundary conditions. (6) and (7). This results in the 
following four equations, 

0 = C,ber&R,) + C,bei&R,) + C,ker&R,) 

+ C,keio(qR,). (12) 

0 = - C,bei,(rlRi) + C,ber,(r/R,) - C,kei&R,) 

+ C,ker&R,), (13) 

0 = C,ber,(qR,) + C,bei&R,) + C,ker&R,) 

+ C,kei&R,). (14) 

t = $[ -C,bei,(rlR,) + C,ber&R,) - C,kei&/R,) 

+ C,krr,lrtRo). (15) 

Equations (12H15) are solved simultaneously to dcter- 
mine the values of the unknown constants, C,, C,, C, and 
C,. Thus Vand 4 can be evaluated and the pressure drop 
parameter L is obtained from the continuity equation (5) 
as, L= J J dA/J JVdA. Once L is obtained. V and 9 are 
determined. 

The numerical integration method of Rungc-Kutta of 
order four was used to obtain the solutions with viscous 
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dissipation term. The method requires the complete set of 
functional values K 4 and their gradients at the starting 
boundary point and the estimates of the missing initial 
boundary conditions were made from the exact solution 
results. The resulting solutions were then improved by 
iteration to obtain the desired solutions. 

Once the solution for the velocity and temperature func- 
tions is obtained, Nusselt numbers can be evaluated. The 
Nusselt number expression including the viscous dissipation 
effect can be written in the dimensionless form as, 

SMy(dvdR,2R dR - 1 

Nu = $ 

j,Vc$R dR,yVR dR 

(16) 

R, 

DISCUSSIONS 

The exact solution with M = 0 for the concentric annulus 
involved the Kelvin functions and their derivatives because 
of the thermal boundary condition of one wall being insul- 
ated. These functions were evaluated in Double Precision 
from McLachlan [lS). The number of terms required for 
convergence was of the order of 20. The nonlinear problem 
(M > 0) was solved by Runge-Kutta fourth order method 
in Double Precision and the accuracy of the R-K method 
was judged by obtaining results for M = 0 and comparing 
them with the exact solution results. These results agreed 
very closely. 

Since the effect of viscous dissipation on the velocity and 
temperature,field is found to be very small (for maximum 
value of M = OOOO5 used here), it is not convenient to 
present the results graphically and, therefore, only a few 
general observations will be made. 

For pure convection (Ra = O), the equation of motion (3) 
becomes independent of the energy equation (4). As such, 
the velocity field is unaffected by the presence of viscous 
dissipation term. The temperature field, however, is strongly 
influenced by the viscous dissipation parameter. This 
parameter M converts viscous work to heat. When heat is 
being supplied to the duct externally, the parameter M 
reduces the temperature differences 4 in the fluid and this 
has been noted in all the three Cases treated here. 

For Ra > 0, the equations (3) and (4) become coupled. 
This coupling becomes stronger as the value of Ra is in- 
creased. Therefore, in combined free and forced convection, 
the viscous dissipation could strongly influence the velocity 
and temperature fields. In the present study of heated 
vertical ducts, viscous dissipation reduces the temperature 
differences. The reduced temperature differences influence 
the velocity profiles in a direction opposite to the free con- 
vection effect. In upflow heating, the effect of free convec- 
tion is to increase the velocity near heated wall and reduce 
it elsewhere; while the effect of M has been found to be 
precisely the opposite in all the three Cases studied here. 

As mentioned earlier, viscous dissipation opposes the 
impressed external heating and reduces the heat transfer 
rate resulting in lower values of Nusselt numbers. Figure 1 
shows the effect of viscous dissipation on Nusselt numbers 
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05 
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FIG. 1. Effect of viscous dissipation parameter on Nusselt 
number for concentric annulus with outer wall heated, 

inner wall insulated. 

for outer wall heated, inner wall insulated with Iz = 025 
and @5. From this figure it can be seen that Nusselt num- 
bers decrease with increase in the dissipation parameter M. 
The reduction in Nusselt numbers with increasing values 
of M becomes more pronounced at higher Rayleigh numbers. 
Figure 2 shows the effect of M on Nusselt numbers for inner 
wall heated, outer wall insulated. For this case too, it can be 
seen that lower values of Nusselt numbers are obtained when 
viscous dissipation is taken into account. The effect of M on 
Nusselt numbers for the case of both walls heated is shown 
in Fig. 3. As anticipated the Nusselt numbers are again 
reduced with increasing M and this reduction becomes more 
pronounced at higher Rayleigh numbers. 

The effect of radius ratio I on the Nusselt numbers can be 
seen from Figs. 1-3. Figures 1 and 3 show that for outer wall 
heated and inner wall insulated or for both walls heated, 
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FIG. 2. Effect of viscous dissipation parameter on Nusselt 

number for concentric annulus with inner wall heated, 

outer wall insulated. 
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FIG. 3. Effect of viscous dissipation parameter on Nusselt 
number for concentric annulus with both walls heated. 

high values of Nusselt numbers are obtained by increasing 

1. Whereas from Fig. 2 it can be seen that, for inner wall 

heated, outer wall insulated, the Nusselt numbers arc 

reduced by increasing 1. The reason for the latter case is due 

to the fact that by increasing I, we in fact reduce the hydraulic 

diameter D,,, which in turn reduces the Nusselt numbers. 

A comparison of the reduction in Nusselt numbers for 

the same value of the dissipation parameter M has also been 

studied. It is found that the maximum reduction occurs for 

the case of inner wall heated, outer wall insulated and the 

minimum reduction occurs for the case of both walls heated. 
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NOMENCLATURE 
space between disks ; 
coefficients in the expansions of the eigen- 
functions ; 
defined in equation (3); 

c/@/2) ; 
defined in equation (18) ; 
specific heat at constant pressure ; 
eccentricity ; 
eh ; 
Eckert number, U,$C,AT; 
the scale factors defined in equation (2); 
heat conductivity ; 
values of x1 at inlet and outlet radii ; 
a positive integer ; 
local and average Nusselt numbers ; 
PC&t number ; 
~elogAW(k, - k,) ; 
heat transfer ; 
radius of the disk ; 
r,i(W); 
r,/(W); 
a function of x2 only, equation (13); 
temperature ; 
reference velocity ; 
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VI, v2, velocity components in the x1- and xq- 
directions ; 

Xl, x2., x3, bipolar coordinate frame ; 
- - 

x;, X2, x3; definedinequations(lO)and(ll): 

x defined in equation (19); 
Z a function of Z3 only, equation (13). 

Greek letters 
dynamic viscosity ; 
density ; 
ri/re ; 
e/u - 7); 
eigenvalues ; 
cc - m-L - To). 

i, e and w refer to conditions at inlet, exit 
and wall respectively. 

ANALYSIS 
THE BNRGY equation for the laminar, creeping flow of 

incompressible fluids between parallel circular disks with 
eccentric inlet (see Fig. 1) can be written, in bipolar co- 
ordinates, as 

=kg (1) 
3 

subject to the boundary conditions : 

Tb,, ~2, b/2) = T(x,, ~2, -b/2) = T, 
T(x,, ki, x;) = T,. 

The viscous dissipation terms are neglected, which is 
justified for small Eckert numbers, i.e. E( = Uz jC,,AT)* 1. 


